

 Navigation

 	
 index

 	
 next |

 	Brewday 0.0.5 documentation

BrewDay - Tools for Homebrewers

BrewDay is a set of tools for homebrewers written in python.

Tutorial

Getting started with BrewDay

	Features

API Docs

	brew.grains

	brew.hops

	brew.yeasts

	brew.recipes

	brew.parsers

	brew.validators

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

Features

	Work with recipes, grains, hops and yeast

	Develop recipes

	Understand bitterness and color

Back to Index

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

brew.grains

	
class brew.grains.Grain(name, color=None, ppg=None, hwe=None)

	A representation of a type of grain.

	
format()

	

	
get_working_yield(percent_brew_house_yield)

	Working Yield
Working Yield is the product of the Hot Water Extract multiplied by the
Brew House Yield. This product will provide the percent of extract
collected from the malt.

WY = (HWE as-is)(BHY)

	
to_dict()

	

	
to_json()

	

	
class brew.grains.GrainAddition(grain, weight=None, grain_type='cereal', units='imperial')

	A representation of the grain as added to a Recipe.

	
change_units()

	Change units from one type to the other return new instance

	
format()

	

	
get_cereal_weight()

	Get the weight of the addition in cereal weight

	
get_dry_weight()

	Get the weight of the addition in Dry Malt Extract weight

	
get_lme_weight()

	Get the weight of the addition in Liquid Malt Extract weight

	
get_weight_map()

	

	
set_units(units)

	

	
to_dict()

	

	
to_json()

	

	
classmethod validate(grain_data)

	

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

brew.hops

	
class brew.hops.Hop(name, percent_alpha_acids=None)

	A representation of a type of Hop.

	
format()

	

	
to_dict()

	

	
to_json()

	

	
class brew.hops.HopAddition(hop, weight=None, boil_time=None, hop_type='pellet', utilization_cls=<class 'brew.utilities.hops.HopsUtilizationGlennTinseth'>, utilization_cls_kwargs=None, units='imperial')

	A representation of the Hop as added to a Recipe.

	
change_units()

	Change units from one type to the other return new instance

	
format()

	

	
get_alpha_acid_units()

	Alpha Acid Units

Defined as ounces of hops * alpha acids

	
get_hops_weight(sg, target_ibu, final_volume, percent_contribution)

	Weight of Hops
IBUs or International Bittering Units measures a bitterness unit for hops.
IBUs are the measurement in parts per million (ppm) of iso-alpha acids
in the beer. For example, an IPA with 75 IBUs has 75 milligrams of
isomerized alpha acids per liter. The equation used to calculate the
weight of hops for the boil is as follows.

Ounces hops = (IBU Target)(galbeer)(IBU%) / (%a-acid)(%Utilization)(7489)

The IBU target equals the total bitterness for the beer. (e.g. an IPA
may have an IBU target of 75 IBUs) The percent IBU is equal to the
percent of IBUs from each hop addition. You may wish for your first hop
addition to contribute 95% of the total IBUs. This would make your
IBU% 95%. The %a-acid is the amount of alpha acid in the hops and can
be found on the hop packaging. The % Utilization is a measurement of
the percentage of alpha acid units that will isomerize in the boil.
The following chart outlines the typical utilizations and hop boil times.

60 min = 30% utilization
30 min = 15%
5 min = 2.5%

The 7489 is a conversion factor and used to cancel the units in the
equation, converting oz/gallon to mg/l. For the hops equation, the
units for the % must be expressed in decimal form. (e.g. 10%= .10)

Source:
- http://www.learntobrew.com/page/1mdhe/Shopping/Beer_Calculations.html
nopep8

	
get_ibus(sg, final_volume)

	

	
set_units(units)

	

	
to_dict()

	

	
to_json()

	

	
classmethod validate(hop_data)

	

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

brew.yeasts

	
class brew.yeasts.Yeast(name, percent_attenuation=0.75)

	A representation of a type of Yeast as added to a Recipe.

	
format()

	

	
to_dict()

	

	
to_json()

	

	
classmethod validate(yeast_data)

	

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

brew.recipes

	
class brew.recipes.Recipe(name, grain_additions=None, hop_additions=None, yeast=None, percent_brew_house_yield=0.7, start_volume=7.0, final_volume=5.0, units='imperial')

	A representation of a Recipe that can be brewed to make beer.

	
change_units()

	Change units from one type to the other return new instance

	
format()

	

	
get_boil_gravity()

	

	
get_boil_gravity_units()

	

	
get_brew_house_yield(plato_actual, vol_actual)

	Brew House Yield (BHY)
Brew house yield is a measurement that tells the efficiency of the
brewing. The actual degrees Plato from the brew and the actual gallons
collected out of the kettle are needed to calculate the BHY.

BHY = [(Pactual)(galactual)(BHYtarget)] / [(Ptarget)(galtarget)]

	
get_bu_to_gu()

	Returns ratio of Bitterness Units to Original Gravity Units

	
get_degrees_plato()

	

	
get_extract_weight()

	Weight of Extract
The weight of extract is the amount of malt extract present in the
wort.

Lbs extract = (density of water) * (gal of wort) * (SG) * (P/100)

The weight of one gallon of water in the above formula is 8.32 lbs/gal

To find the weight of a gallon of wort, multiply the specific gravity
of the wort by the density of water.

Plato is a percentage of sugars by weight. So 10 Plato means solution
is 10% sugars. In this equation we convert the degrees plato to a
decimal number between 0.0 and 1.0 by dividing it by 100. This is
multiplied by the weight of a gallon of wort.

	
get_final_gravity()

	

	
get_final_gravity_units()

	

	
get_grain_add_cereal_weight(grain_add)

	When converting DME or LME to grain its important to remember
that you can’t get 100% efficiency from grains. Dividing by
the brew house yield will increase the size of the grain
accordingly.

	
get_grain_add_dry_weight(grain_add)

	When converting Grain to DME its important to remember
that you can’t get 100% efficiency from grains. Multiplying by
the brew house yield will decrease the size of the DME
accordingly.

	
get_mash_water_volume(liquor_to_grist_ratio)

	Mash Water Volume
To calculate the mash water volume you will need to know your liquor to
grist ratio. The term liquor refers to the mash water and grist refers
to the milled malt. We need to calculate the appropriate amount of
water to allow for enzyme action and starch conversion take place.

gallons H2O = (Lbs malt)(L:G)(1gallon H2O) / 8.32 pounds water

	
get_original_gravity()

	

	
get_original_gravity_units()

	

	
get_percent_ibus(hop_add)

	Get the percentage the hops contributes to total ibus

	
get_percent_malt_bill(grain_add)

	Percent malt bill is how much extract each grain addition adds to the
recipe. To ensure different additions are measured equally each is
converted to dry weight.

	
classmethod get_strike_temp(mash_temp, malt_temp, liquor_to_grist_ratio)

	Strike Water Temp
As you know when you are mashing, your strike water has to be warmer
than the target mash temperature because the cool malt will cool the
temperature of the water. To correctly calculate the temperature of
the strike water, use the following formula.

Strike Temp = [((0.4)(T mash-T malt)) / L:G] + T mash

	
get_total_dry_weight()

	

	
get_total_grain_weight()

	

	
get_total_ibu()

	Convenience method to get total IBU for the recipe

	
get_total_points()

	

	
get_total_wort_color()

	Convenience method to get total wort color

	
get_total_wort_color_map()

	Convenience method to get total wort color

	
get_wort_color(grain_add)

	

	
get_wort_color_mcu(grain_add)

	Calculation of Wort and Beer Color

Color of Wort = S [(% extract)(L of malt)(P wort / 8P reference)]

Source:
http://beersmith.com/blog/2008/04/29/beer-color-understanding-srm-lovibond-and-ebc/
http://brewwiki.com/index.php/Estimating_Color

	
grain_lookup = {}

	

	
hop_lookup = {}

	

	
set_units(units)

	

	
to_dict()

	

	
to_json()

	

	
classmethod validate(recipe)

	

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Brewday 0.0.5 documentation

brew.parsers

	
class brew.parsers.DataLoader(data_dir)

	Base class for loading data from data files inside the data_dir.

	
DATA = {}

	

	
EXT = ''

	

	
classmethod format_name(name)

	Reformat a given name to match the filename of a data file.

	
get_item(dir_suffix, item_name)

	

	
classmethod read_data(filename)

	

	
class brew.parsers.JSONDataLoader(data_dir)

	Load data from JSON files inside the data_dir.

	
DATA = {}

	

	
EXT = 'json'

	

	
format_name(name)

	Reformat a given name to match the filename of a data file.

	
get_item(dir_suffix, item_name)

	

	
classmethod read_data(filename)

	

	
parsers.parse_cereals(cereal, loader)

	Parse grains data from a recipe

Grain must have the following top level attributes:
- name (str)
- weight (float)
- data (dict) (optional)

Additionally grains may contain override data in the ‘data’
attribute with the following keys:
- color (float)
- ppg (int)

	
parsers.parse_hops(hop, loader)

	Parse hops data from a recipe

Hops must have the following top level attributes:
- name (str)
- weight (float)
- boil_time (float)
- data (dict) (optional)

Additionally hops may contain override data in the ‘data’ attribute
with the following keys:
- percent_alpha_acids (float)

	
parsers.parse_yeast(yeast, loader)

	Parse yeast data from a recipe

Yeast must have the following top level attributes:
- name (str)
- data (dict) (optional)

Additionally yeast may contain override data in the ‘data’ attribute
with the following keys:
- percent_attenuation (float)

	
parsers.parse_recipe(recipe, loader, cereals_loader=None, hops_loader=None, yeast_loader=None)

	Parse a recipe from a python Dict

recipe: a python dict describing the recipe
loader: a data loader class that loads data from data files

A recipe must have the following top level attributes:
- name (str)
- start_volume (float)
- final_volume (float)
- grains (list(dict))
- hops (list(dict))
- yeast (dict)

Additionally the recipe may contain override data in the ‘data’
attribute with the following keys:
- percent_brew_house_yield (float)
- units (str)

All other fields will be ignored and may be used for other metadata.

The dict objects in the grains, hops, and yeast values are required to have
the key ‘name’ and the remaining attributes will be looked up in the data
directory if they are not provided.

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	
 previous |

 	Brewday 0.0.5 documentation

brew.validators

	
validators.validate_grain_type(grain_type)

	

	
validators.validate_hop_type(hop_type)

	

	
validators.validate_percentage(percent)

	

	
validators.validate_units(units)

	

	
validators.validate_required_fields(data, required_fields)

	Validate fields which are required as part of the data.

data: a python dict
required_fields: a list of tuples where the first element is a string with

a value that should be a key found in the data dict and
where the second element is a python type or list/tuple of
python types to check the field against.

	
validators.validate_optional_fields(data, optional_fields, data_field='data')

	Validate fields which are optional as part of the data.

data: a python dict
optional_fields: a list of tuples where the first element is a string with

a value that should be a key found in the data dict and
where the second element is a python type or list/tuple of
python types to check the field against.

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 Navigation

 	
 index

 	Brewday 0.0.5 documentation

Index

 C
 | D
 | E
 | F
 | G
 | H
 | J
 | P
 | R
 | S
 | T
 | V
 | Y

C

 	

 	change_units() (brew.grains.GrainAddition method)

 	

 	(brew.hops.HopAddition method)

 	(brew.recipes.Recipe method)

D

 	

 	DATA (brew.parsers.DataLoader attribute)

 	

 	(brew.parsers.JSONDataLoader attribute)

 	

 	DataLoader (class in brew.parsers)

E

 	

 	EXT (brew.parsers.DataLoader attribute)

 	

 	(brew.parsers.JSONDataLoader attribute)

F

 	

 	format() (brew.grains.Grain method)

 	

 	(brew.grains.GrainAddition method)

 	(brew.hops.Hop method)

 	(brew.hops.HopAddition method)

 	(brew.recipes.Recipe method)

 	(brew.yeasts.Yeast method)

 	

 	format_name() (brew.parsers.DataLoader class method)

 	

 	(brew.parsers.JSONDataLoader method)

G

 	

 	get_alpha_acid_units() (brew.hops.HopAddition method)

 	get_boil_gravity() (brew.recipes.Recipe method)

 	get_boil_gravity_units() (brew.recipes.Recipe method)

 	get_brew_house_yield() (brew.recipes.Recipe method)

 	get_bu_to_gu() (brew.recipes.Recipe method)

 	get_cereal_weight() (brew.grains.GrainAddition method)

 	get_degrees_plato() (brew.recipes.Recipe method)

 	get_dry_weight() (brew.grains.GrainAddition method)

 	get_extract_weight() (brew.recipes.Recipe method)

 	get_final_gravity() (brew.recipes.Recipe method)

 	get_final_gravity_units() (brew.recipes.Recipe method)

 	get_grain_add_cereal_weight() (brew.recipes.Recipe method)

 	get_grain_add_dry_weight() (brew.recipes.Recipe method)

 	get_hops_weight() (brew.hops.HopAddition method)

 	get_ibus() (brew.hops.HopAddition method)

 	get_item() (brew.parsers.DataLoader method)

 	

 	(brew.parsers.JSONDataLoader method)

 	get_lme_weight() (brew.grains.GrainAddition method)

 	get_mash_water_volume() (brew.recipes.Recipe method)

 	

 	get_original_gravity() (brew.recipes.Recipe method)

 	get_original_gravity_units() (brew.recipes.Recipe method)

 	get_percent_ibus() (brew.recipes.Recipe method)

 	get_percent_malt_bill() (brew.recipes.Recipe method)

 	get_strike_temp() (brew.recipes.Recipe class method)

 	get_total_dry_weight() (brew.recipes.Recipe method)

 	get_total_grain_weight() (brew.recipes.Recipe method)

 	get_total_ibu() (brew.recipes.Recipe method)

 	get_total_points() (brew.recipes.Recipe method)

 	get_total_wort_color() (brew.recipes.Recipe method)

 	get_total_wort_color_map() (brew.recipes.Recipe method)

 	get_weight_map() (brew.grains.GrainAddition method)

 	get_working_yield() (brew.grains.Grain method)

 	get_wort_color() (brew.recipes.Recipe method)

 	get_wort_color_mcu() (brew.recipes.Recipe method)

 	Grain (class in brew.grains)

 	grain_lookup (brew.recipes.Recipe attribute)

 	GrainAddition (class in brew.grains)

H

 	

 	Hop (class in brew.hops)

 	hop_lookup (brew.recipes.Recipe attribute)

 	

 	HopAddition (class in brew.hops)

J

 	

 	JSONDataLoader (class in brew.parsers)

P

 	

 	parse_cereals() (brew.parsers method)

 	parse_hops() (brew.parsers method)

 	

 	parse_recipe() (brew.parsers method)

 	parse_yeast() (brew.parsers method)

R

 	

 	read_data() (brew.parsers.DataLoader class method)

 	

 	(brew.parsers.JSONDataLoader class method)

 	

 	Recipe (class in brew.recipes)

S

 	

 	set_units() (brew.grains.GrainAddition method)

 	

 	(brew.hops.HopAddition method)

 	(brew.recipes.Recipe method)

T

 	

 	to_dict() (brew.grains.Grain method)

 	

 	(brew.grains.GrainAddition method)

 	(brew.hops.Hop method)

 	(brew.hops.HopAddition method)

 	(brew.recipes.Recipe method)

 	(brew.yeasts.Yeast method)

 	

 	to_json() (brew.grains.Grain method)

 	

 	(brew.grains.GrainAddition method)

 	(brew.hops.Hop method)

 	(brew.hops.HopAddition method)

 	(brew.recipes.Recipe method)

 	(brew.yeasts.Yeast method)

V

 	

 	validate() (brew.grains.GrainAddition class method)

 	

 	(brew.hops.HopAddition class method)

 	(brew.recipes.Recipe class method)

 	(brew.yeasts.Yeast class method)

 	validate_grain_type() (brew.validators method)

 	validate_hop_type() (brew.validators method)

 	validate_optional_fields() (brew.validators method)

 	

 	validate_percentage() (brew.validators method)

 	validate_required_fields() (brew.validators method)

 	validate_units() (brew.validators method)

Y

 	

 	Yeast (class in brew.yeasts)

 Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

 _static/file.png

_static/minus.png

_modules/index.html

 Navigation

 		
 index

 		Brewday 0.0.5 documentation »

 All modules for which code is available

		brew.grains

		brew.hops

		brew.parsers

		brew.recipes

		brew.validators

		brew.yeasts

 © Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		Brewday 0.0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Chris Gilmer.
 Created using Sphinx 1.3.6.

_static/up.png

_static/down-pressed.png

